首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意机制和循环卷积神经网络的细粒度图像分类算法
引用本文:王伟,吴芳. 基于注意机制和循环卷积神经网络的细粒度图像分类算法[J]. 西南师范大学学报(自然科学版), 2020, 45(1): 48-56
作者姓名:王伟  吴芳
作者单位:1. 郑州工程技术学院 信息工程学院, 郑州 450044;2. 河南财政金融学院 物理与电子工程学院, 郑州 450046
基金项目:河南省重点科技攻关项目(182102210594);河南省高等学校重点科研项目(18A140013).
摘    要:
细粒度图像分类是计算机视觉中非常热的研究方向.由于同一个大物种的子类别之间具有相似的外观,相似的颜色,所以差别非常细微.因此,细粒度图像分类非常具有挑战性.为了解决这个挑战,该文提出一种基于注意机制的循环卷积神经网络用于细粒度图像分类.首先,根据注意机制循环提取一幅图像中的显著性物体区域;然后,对原始图像和每次提取的显著性区域分别进行分类;最后,融合分类层得分,进行最终分类.在非常有挑战性的公共数据集CUB-200-2011,Stanford Dogs和Stanford Cars上进行实验,与比较先进的实验方法进行比较,实验结果表明该文提出的方法非常有效.

关 键 词:细粒度图像分类  显著性检测  注意机制  卷积神经网络
收稿时间:2019-04-15

Fine-Grained Image Classification Algorithm Based on Attention Mechanism and Circular Convolutional Neural Network
WANG Wei,WU Fang. Fine-Grained Image Classification Algorithm Based on Attention Mechanism and Circular Convolutional Neural Network[J]. Journal of southwest china normal university(natural science edition), 2020, 45(1): 48-56
Authors:WANG Wei  WU Fang
Affiliation:1. College of Information Engineering, Zhengzhou Institute of Technology, Zhengzhou 450044, China;2. College of Physical and electronic Engineering, Henan Finance University, Zhengzhou 450046, China
Abstract:
Fine-grained image classification is a hot research field in computer vision. Because subcategories within a large species have similar appearances and similar colors, the differences are subtle. Therefore, fine-grained image classification is very challenging. To solve this problem, an attention-based cyclic convolutional neural network for fine-grained image classification has been proposed in this paper. Firstly, according to the attention mechanism, the region of the significant object in an image is extracted. Secondly, the original image and the significance region of each extraction are classified respectively. And finally, the score of classification layer is fused for final classification. We conduct experiments on very challenging public datasets:CUB 200-2011, Stanford Dogs and Stanford Cars. We compared our method with the state-of-the-art methods, and the experimental results show that our proposed method is very effective.
Keywords:fine-grained image classification  significance detection  attention mechanism  convolutional neural network
本文献已被 CNKI 等数据库收录!
点击此处可从《西南师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西南师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号