首页 | 本学科首页   官方微博 | 高级检索  
     

车间多载自动导引车绿色物流调度
引用本文:王真,王晨曦,王宇豪,杜利珍. 车间多载自动导引车绿色物流调度[J]. 重庆大学学报(自然科学版), 2020, 43(1): 44-52
作者姓名:王真  王晨曦  王宇豪  杜利珍
作者单位:武汉纺织大学 机械工程及自动化学院, 武汉 430073,武汉纺织大学 机械工程及自动化学院, 武汉 430073,武汉纺织大学 机械工程及自动化学院, 武汉 430073,武汉纺织大学 机械工程及自动化学院, 武汉 430073
基金项目:国家自然科学基金资助项目(51375004);湖北省数字化纺织装备重点实验室2017年度开放基金资助项目(DTL2017010)。
摘    要:随着现代制造业的飞速发展,企业在生产效率和生产能耗方面有越来越高的要求,智能生产车间的自动化程度逐渐提高。主要研究作业车间自动导引车(automated guided vehicle,AGV)的智能绿色物流调度问题。首先,建立以降低AGV能耗和最优AGV路径为目标的AGV物流调度优化模型;然后,提出一种以任务排序为约束的改进遗传粒子群算法;最后,以某针织车间的实际物流调度为例对文中方法进行验证。计算结果表明,文中提出的AGV物流调度模型能够较好地模拟AGV绿色调度耗能问题,提出的改进遗传粒子群算法具有较快的收敛速度和较好的寻优能力。

关 键 词:物流调度  全自动寻轨小车  绿色要素  遗传粒子群算法
收稿时间:2019-05-18

On multi-load AGV green logistics scheduling in knitting workshop
WANG Zhen,WANG Chenxi,WANG Yuhao and DU Lizhen. On multi-load AGV green logistics scheduling in knitting workshop[J]. Journal of Chongqing University(Natural Science Edition), 2020, 43(1): 44-52
Authors:WANG Zhen  WANG Chenxi  WANG Yuhao  DU Lizhen
Affiliation:School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, P. R. China,School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, P. R. China,School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, P. R. China and School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, P. R. China
Abstract:With the rapid development of modern manufacturing industry, enterprises are required to have higher production efficiency and lower production energy consumption, resulting in more improvement of the automation degree of intelligent production workshop. This paper mainly studied green intelligent logistics scheduling of automated guided vehicle(AGV) in job shop. AGV logistics scheduling optimization model was establised to reduce the energy consumption of AGV and optimize AGV path. A genetic particle swarm optimization (PSO) algorithm was proposed with task sequencing as the constraint condition. Finally, the actual logistics scheduling of a knitting shop was taken as example to verify the method proposed in this paper. The calculation results show that the AGV logistics scheduling model proposed can well simulate the AGV green scheduling energy consumption, and the improved genetic particle swarm optimization algorithm presents a faster convergence speed and a better optimization ability.
Keywords:logistics scheduling  AGV  green element  GA-PSO
本文献已被 CNKI 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号