首页 | 本学科首页   官方微博 | 高级检索  
     

基于选择性模型更新与卡尔曼滤波的目标模型更新算法
引用本文:刘亚娟. 基于选择性模型更新与卡尔曼滤波的目标模型更新算法[J]. 科学技术与工程, 2012, 12(34): 9396-9399
作者姓名:刘亚娟
作者单位:江苏科技大学电子信息学院,镇江,212003
摘    要:
选择性模型更新算法不能准确地更新目标模型,在外观变化、遮挡、场景光线变化等因素影响的运动目标跟踪中,不能有效地处理目标模型。因此,提出了一种选择性模型更新与卡尔曼滤波的目标模型更新算法。根据可靠性阈值和分量更新比例精确选取更新分量,并与Kalman滤波相结合,对目标模型分量进行预测,根据不同干扰和目标外形变化,将两种算法的跟踪结果线性加权得到新的跟踪目标模型。实验结果表明该算法具有良好的跟踪效果。

关 键 词:目标跟踪  选择性模型更新  Kalman滤波
收稿时间:2012-08-07
修稿时间:2012-08-26

A Target Model Update Algorithm Based on Selective Model Updating and Kalman Filtering
liuyajuan. A Target Model Update Algorithm Based on Selective Model Updating and Kalman Filtering[J]. Science Technology and Engineering, 2012, 12(34): 9396-9399
Authors:liuyajuan
Affiliation:*(Jiangsu University of Science and Technology,Zhengjiang 212003,P.R.China)
Abstract:
S elective model update algorithm can not accurately update moving target model, cannot effectively process the target model, in the scene of target appearance changes, occlusion, lighting changes and other factors. Therefore a target model update algorithm based on selective model updating and kalman filtering is proposed. It is accurately select the update component, according to reliability threshold and the proportion of component updates, and combination the Kalman filter, predict the component of target model. The new tracking target model is get by two algorithms tracking the results of linear weighted, depending on the external interference and the target shape changes. Experimental results show the better stability and robustness of the proposed algorithm.
Keywords:target tracking   selective model update   Kalman filtering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号