首页 | 本学科首页   官方微博 | 高级检索  
     

蚁群算法优化RBF神经网络的网络流量预测
作者姓名:廖金权
作者单位:重庆电子工程职业学院物联网学院,重庆,450045
摘    要:传统RBF神经网络在网络流量预测过程中存在收敛速度慢、极易出现局部最优等缺点,从而导致预测精度低。采用蚁群算法优化RBF神经网络参数来进行网络流量预测。利用蚁群优化算法来训练RBF神经网络的基函数宽度和中心,简化网络结构,加快收敛速度,防止局部最优的出现,改善RBF神经网络的泛化能力。实验结果表明,相对于GA-RBF以及PSO-RBF流量预测模型,模型预测准确度更高,能够很好地描述网络流的变化规律。具有泛化能力强、稳定性良好的特点,在网络流量预测中有一定的实用价值。

关 键 词:RBF神经网络  蚁群算法  基函数  网络流量预测
收稿时间:2012-07-31
修稿时间:2012-07-31
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号