首页 | 本学科首页   官方微博 | 高级检索  
     


Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity
Authors:Yoshie T  Scherer A  Hendrickson J  Khitrova G  Gibbs H M  Rupper G  Ell C  Shchekin O B  Deppe D G
Affiliation:Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
Abstract:Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity--which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes--has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号