首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Site-directed mutagenesis of cytochrome c shows that an invariant Phe is not essential for function
Authors:G J Pielak  A G Mauk  M Smith
Abstract:Phenylalanine 87 of yeast iso-1-cytochrome c (Phe 82 in horse heart and bonito) is phylogenetically conserved and occurs near the surface of the protein. It has been suggested that this residue is directly involved in electron transfer between cytochrome c and cytochrome c peroxidase (CCP) and may also control the polarity of the haem environment. Because Phe residues are not susceptible to chemical modification, no direct means of studying the functional role of Phe 87 has been available, so we have chosen Phe 87 as our initial target here to test the feasibility of using site-directed mutagenesis as a means of studying structure-function relationships in cytochrome c. We have changed the codon for Phe 87 to that of either a Ser, a Tyr or a Gly. The mutated genes have been introduced into a yeast strain lacking both isozymes of cytochrome c. Unlike the recipient strain, transformants grow on a non-fermentable carbon source, indicating that the mutant proteins can reduce cytochrome oxidase. The purified mutant proteins are similar to wild type with respect to their visible spectra, 20-70% as active as wild-type protein in the CCP assay, and their reduction potentials are lowered by as much as 50 mV. Thus Phe 87 is not essential for cytochrome c to transfer electrons but is involved in determining the reduction potential.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号