首页 | 本学科首页   官方微博 | 高级检索  
     

广义色散Camassa-Holm方程的精确解
引用本文:孙璐,田立新. 广义色散Camassa-Holm方程的精确解[J]. 江苏大学学报(自然科学版), 2005, 26(Z1): 1-4
作者姓名:孙璐  田立新
作者单位:江苏大学非线性科学研究中心,江苏,镇江,212013
基金项目:国家自然科学基金资助项目(10071003);江苏省自然科学基金资助项目(2000-65-31)
摘    要:为了研究非线性色散对Compacton和孤立波形成的作用,对非线性Camassa-Holm方程增加一色散项(ul)3x后得到广义色散Camassa-Holm方程.拟设该方程具有4种形式解,得到了丰富的精确解.讨论了在各种不同的非线性参数条件下,得到单峰、双峰Compacton解、斑图解、孤立波解、周期波解以及Kink Compacton解.研究了高维广义色散Camassa-Holm方程的精确解.结果表明,非线性和色散的相互作用是形成孤立波的关键.

关 键 词:非线性偏微分方程  Camassa-Holm方程  斑图解  Compacton解  孤立波解  周期波解
修稿时间:2004-08-16

Exact solutions for generalized dispersive Camassa-Holm equation
SUN Lu,TIAN Li-xin. Exact solutions for generalized dispersive Camassa-Holm equation[J]. Journal of Jiangsu University:Natural Science Edition, 2005, 26(Z1): 1-4
Authors:SUN Lu  TIAN Li-xin
Abstract:To understand the role of nonlinear dispersion in compacton and solitary wave formation,disprsive Camassa-Holm equation is generalized by adding a dispersive term(u~l)_(3x).Among four different forms of solutions,abundant solitary wave solutions are obtained.In particular,Kink Compacton(solutions,) solitary wave solution,periodic wave solution,solitary pattern solution and Compacton solutions with one and two peaks are developed.High dimension generalized dispersive Camassa-Holm(equation) are also studied.The reciprocity between nonlinearity and dispersion is the key to solitary wave formation.
Keywords:nonlinear partial differential equation  Camassa-Holm equation  solitary pattern solution  Compacton solution  solitary wave solution  periodic wave solution
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号