首页 | 本学科首页   官方微博 | 高级检索  
     

基于复杂属性商品的混合协同过滤推荐模型
作者单位:;1.上海应用技术大学计算机科学与信息工程学院
摘    要:协同过滤作为应用最广、研究最多的推荐算法,但依旧面临数据稀疏性、冷启动、数据质量差等固有问题,同时也鲜有研究者从实用角度基于商品性价比方面提高预测精确度.为此,本文综合考虑用户主观评分和商品客观评分,并在此基础上结合情境预过滤、社会网络理论以及专家意见提出了一种混合协同过滤推荐模型,在一定程度上缓解了上述缺点.并通过真实网上汽车销售数据实验,表明该模型相对传统协同过滤具有更高的预测精度,更适用于具有复杂属性的商品.

关 键 词:协同过滤  情境  复杂属性  个性化推荐

A hybrid collaborative filtering recommendation model based on complex attribute of goods
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号