Abstract: | ![]() ‘Bayesian forecasting’ is a time series method of forecasting which (in the United Kingdom) has become synonymous with the state space formulation of Harrison and Stevens (1976). The approach is distinct from other time series methods in that it envisages changes in model structure. A disjoint class of models is chosen to encompass the changes. Each data point is retrospectively evaluated (using Bayes theorem) to judge which of the models held. Forecasts are then derived conditional on an assumed model holding true. The final forecasts are weighted sums of these conditional forecasts. Few empirical evaluations have been carried out. This paper reports a large scale comparison of time series forecasting methods including the Bayesian. The approach is two fold: a simulation study to examine parameter sensitivity and an empirical study which contrasts Bayesian with other time series methods. |