首页 | 本学科首页   官方微博 | 高级检索  
     

变电站巡检机器人避障方法研究与应用
引用本文:鲜开义,彭志远,谷湘煜,梁洪军,蒋鑫,查盛. 变电站巡检机器人避障方法研究与应用[J]. 科学技术与工程, 2021, 21(5): 1957-1962
作者姓名:鲜开义  彭志远  谷湘煜  梁洪军  蒋鑫  查盛
作者单位:深圳市朗驰欣创科技股份有限公司成都分公司,成都610000
基金项目:四川省重大科技专项(18ZDZX0162)
摘    要:为提升变电站巡检机器人的导航避障能力,将深度学习技术应用于变电站场景识别中,提出了一种基于深度卷积神经网络的避障方法.该方法联合图像分类和语义分割两个分支来共同辅助机器人导航避障,分类分支通过获取图像全局信息,保证机器人正确行驶方向;而语义分割支路则根据图像局部信息以及机器人前方目标类别,指导机器人准确避障.实验结果表...

关 键 词:卷积神经网络  语义分割  图像分类  变电站巡检机器人  避障
收稿时间:2020-05-12
修稿时间:2021-02-03

Research and Application of Obstacle Avoidance Method for Substation Inspection Robot
Xian Kaiyi,Peng Zhiyuan,Gu Xiangyu,Liang Hongjun,Jiang Xin,Zha Sheng. Research and Application of Obstacle Avoidance Method for Substation Inspection Robot[J]. Science Technology and Engineering, 2021, 21(5): 1957-1962
Authors:Xian Kaiyi  Peng Zhiyuan  Gu Xiangyu  Liang Hongjun  Jiang Xin  Zha Sheng
Affiliation:Shenzhen Launch Digital Technology Co.,Ltd,Shenzhen Launch Digital Technology Co.,Ltd,Shenzhen Launch Digital Technology Co.,Ltd,Shenzhen Launch Digital Technology Co.,Ltd,Shenzhen Launch Digital Technology Co.,Ltd,Shenzhen Launch Digital Technology Co.,Ltd
Abstract:In order to improve the navigation obstacle avoidance ability to the substation inspection robot, a deep convolution neural network based on deep learning technology is used to robot obstacle avoidance. This method combines image classification and semantic segmentation to assist the robot in navigation and obstacle avoidance. The classification branch obtains global image information to ensure the correct direction of the robot. The semantic segmentation branch guides the robot to avoid obstacles accurately based on the local information of the image and the target category in front of the robot. Experimental results show that the method proposed in this paper can classify and segment images effectively. At the same time, in the actual substation environment, it can also provide effective obstacle avoidance information for inspection robots and realize real-time autonomous obstacle avoidance.
Keywords:convolutional network   semantic segmentation   image classification   substation inspection robot   obstacles avoidance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号