首页 | 本学科首页   官方微博 | 高级检索  
     

BP神经网络算法的改进及其应用
引用本文:刘桂莲,王福林,索瑞霞. BP神经网络算法的改进及其应用[J]. 农业系统科学与综合研究, 2010, 26(2): 170-173
作者姓名:刘桂莲  王福林  索瑞霞
作者单位:东北农业大学,工程学院,黑龙江,哈尔滨,150030
基金项目:国家"863"专题 
摘    要:根据BP算法的基本原理,分析指出了BP算法存在着收敛慢、接近最优时易产生波动和振荡现象的原因。在此基础上,通过进一步研究,提出了一种新的改进BP算法。改进后的BP算法不仅运算速度有所提高,而且在一定程度上克服了易产生波动和振荡现象的问题。由于改进BP算法的每个权都能找到最优学习率,因此收敛精度得到了提高;并且该算法基本不受初始学习率的影响,因而避免了学习率选取的困难。图1,表3,参4。

关 键 词:BP神经网络  最优学习率  权值  算法

An Improved Method of BP Neural Network and Its Application
LIU Gui-lian,WANG Fu-lin,SUO Rui-xia. An Improved Method of BP Neural Network and Its Application[J]. System Sciemces and Comprehensive Studies In Agriculture, 2010, 26(2): 170-173
Authors:LIU Gui-lian  WANG Fu-lin  SUO Rui-xia
Affiliation:( School of Engineering, Northeast Agricultural University , Harbin 150030, China)
Abstract:The paper analyzed the cause of some deficiencies that existed in the standard Back Propagation Neural Network(BPNN) based on the principle of BPNN. The deficiencies including long convergence time and the large learning rate will make the BPNN oscillating. This paper presented the improved BPNN that not only can shorten convergence time but also can overcome the oscillating to some extent. The convergence accuracy could be improved variously as each weight found its optimal learning rate. It was not difficult to select initial learning rate value when the improved BPNN was used.
Keywords:BPNN  learning rate  weight  algorithm
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号