首页 | 本学科首页   官方微博 | 高级检索  
     

功能梯度材料裂纹尖端的动态应力场
引用本文:毕贤顺,蔡雪峰,梁福德. 功能梯度材料裂纹尖端的动态应力场[J]. 黑龙江科技学院学报, 2009, 19(5): 398-400
作者姓名:毕贤顺  蔡雪峰  梁福德
作者单位:福建工程学院,土木工程系,福州,350007
基金项目:福建省科技厅资助省属高校项目,福建工程学院科研发展基金资助项目 
摘    要:功能梯度材料(FGMs)的优越性在于既能有效地抗腐蚀、抗辐射和抗高温,同时又能极大地缓解热应力和残余应力。笔者根据非局部理论对含反平面裂纹无限大功能梯度材料板在冲击载荷作用的问题进行研究。假设材料的剪切模量和密度为指数形式模型,泊松比为常数,利用拉普拉斯和傅立叶变换将混合边界值问题简化为对偶积分方程,并得到裂纹尖端应力场。

关 键 词:功能梯度材料  裂纹  积分变换  对偶积分方程  应力场

Dynamic stress fields around crack-tip in FGMs
BI Xianshun,CAI Xuefeng,LIANG Fude. Dynamic stress fields around crack-tip in FGMs[J]. Journal of Heilongjiang Institute of Science and Technology, 2009, 19(5): 398-400
Authors:BI Xianshun  CAI Xuefeng  LIANG Fude
Affiliation:( Department of Civil Engineering, Fujian University of Technology, Fuzhou 350007, China)
Abstract:The functionally graded materials (FGMs) exhibit advantages that the materials give effective resistance to corrosion, radiation and high temperatures, accompanied by a significant relaxation of the residual and thermal stresses. This paper invesigates an infinite cracked plate subjected to anti-plane shear impact loading by using non-local linear elasticity theory. The shear modulus and mass density of FGMs are assumed to be of exponential form and the Poisson's ratio is assumed to be constant. The mixed boundary value problem is reduced to a pair dual integral equations by the use of Laplace and Fourier integral transform method. The crack-tip stress fields in FGMs are obtained.
Keywords:functionally graded materials  crack  integral transforms  dual integral equations  stress fields
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号