首页 | 本学科首页   官方微博 | 高级检索  
     

基于连续优化蚁群算法的神经网络在喷射器性能预测中的应用
引用本文:黄亮亮,曹家枞. 基于连续优化蚁群算法的神经网络在喷射器性能预测中的应用[J]. 东华大学学报(自然科学版), 2010, 36(2)
作者姓名:黄亮亮  曹家枞
作者单位:东华大学,环境科学与工程学院,上海,201620
基金项目:上海市重点学科建设项目 
摘    要:
以现有的喷射器实验数据集作为样本,用单隐层前向神经网络预测喷射器的性能,网络的训练分别采用连续蚁群系统(CACS)算法和连续蚁群优化(ACOR)算法.数值实验结果显示,用这两种蚁群算法所训练的神经网络对于喷射器性能的预测精度能够满足实际工程的要求,其中ACOR算法的训练误差小于一般的BP算法,预测精度也有所提高.

关 键 词:喷射器  神经网络  蚁群优化算法  连续优化  性能预测

Application of Neural Networks Based on Continuous-ACO Algorithm in Predicting the Performance of Ejectors
HUANG Liang-liang,CAO Jia-cong. Application of Neural Networks Based on Continuous-ACO Algorithm in Predicting the Performance of Ejectors[J]. Journal of Donghua University, 2010, 36(2)
Authors:HUANG Liang-liang  CAO Jia-cong
Abstract:
A model of the feed forward artificial neural network(ANN)with single hidden layer is established to predict the performance of questioned ejectors,of which a great number of experimental data has been obtained in advance.Two different algorithms of continuous ant colony system(CACS)and ant colony optimization in Rn(ACOR)are adopted,respectively,for network training based on the obtained dataset.Numerical experiments show that the predictions of ejector performance by the ANN trained with the two algorithms can meet the requirement of accuracy in ejector practice,and the training error of ACOR algorithm is smaller than that of conventional BP training algorithm,resulting in higher prediction accuracy.
Keywords:ejector  neural network  ant colony optimization algorithm  continuous optimization  pedormance prediction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号