首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的混凝土大坝弹性参数识别方法
引用本文:李守巨,刘迎曦,张正平,黄蔚,沈广和. 基于神经网络的混凝土大坝弹性参数识别方法[J]. 大连理工大学学报, 2000, 40(5): 531-535
作者姓名:李守巨  刘迎曦  张正平  黄蔚  沈广和
作者单位:大连理工大学,工业装备结构分析国家重点实验室,辽宁,大连,116024;国家电力公司,东北公司,辽宁,沈阳,110006;云峰发电厂,水工分场,吉林,集安,134202
基金项目:国家自然科学基金!资助项目 ( 5 97790 0 1),工业装备结构分析国家重点实验室开放基金!资助项目 (GZ990 8)
摘    要:基于人工神经网络方法,根据云峰大坝坝顶水平位移观测资料识别大坝混凝土和岩石基础的弹性模量,采用修正的BP学习算法,并通过对迭代步长的优化计算及对观测数据的归一化处理,提高了参数识别的速度和精度,云峰大坝的工程实际应用表明,用神经网络方法识别材料参数具有识别精度高和收敛速度快等特性,拟合误差小于0.15mm。

关 键 词:混凝土坝  参数识别/人工神经网络

Parameter identification of concrete dam with neural networks
LI Shou-ju,LIU Ying-xi,ZHANG Zheng-ping,HUANG Wei,SHEN Guang-he. Parameter identification of concrete dam with neural networks[J]. Journal of Dalian University of Technology, 2000, 40(5): 531-535
Authors:LI Shou-ju  LIU Ying-xi  ZHANG Zheng-ping  HUANG Wei  SHEN Guang-he
Affiliation:LI Shou ju 1,LIU Ying xi 1,ZHANG Zheng ping 2,HUANG Wei 1,SHEN Guang he 3
Abstract:Based upon the artificial neural networks ,the elastic moduli of the concrete dam and the rock foundation are identified according to the horizontal displacements of the concrete dam in the Yunfeng projects. The precision of the estimated parameters and convergence are enhanced by the optimum of the iteration step size and handling in advance for the observed data. The practical application to the concrete dam in the Yunfeng projects indicates that the parameter identification algorithm proposed by this paper possesses higher identification accuracy, faster convergence, and the fitting error is less than 0.15 mm.
Keywords:concrete dam  parametric recognition/artificial neural networks
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号