首页 | 本学科首页   官方微博 | 高级检索  
     

发动机动态特性组合神经网络建模新方法
作者姓名:刘树成  魏巍  杨阳  闫清东
作者单位:北京理工大学机械与车辆学院,北京 100081;中国北方车辆研究所,北京 100072
基金项目:国家部委基金资助项目(VTDP3101,40402050202);国家自然科学基金资助项目(50905016)
摘    要:针对现有发动机组合神经网络建模方法对不同数组结构的样本数据泛化能力较差的不足,提出一种多步线性插值法的组合神经网络建模方法. 该方法基于有限元建模思想,以具有丰富样本数据的某一维输入量构造网格线,对多维输入样本空间进行划分. 在网格线上,样本数据按照BP算法对网络模型进行训练,得到高精度神经网络函数,而在网格线中间,所求输出根据相邻的两条网格线的神经网络函数进行多步线性插值. 与传统组合神经网络建模方法的对比结果表明,在处理不同数组长度的多维发动机动态特性试验数据方面具有很好的适应能力. 

关 键 词:发动机  组合神经网络  多步线性插值法  动态特性
收稿时间:2013-06-19
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号