首页 | 本学科首页   官方微博 | 高级检索  
     

基于多分量奇异熵的往复式压缩机故障分类
引用本文:苑宇,马孝江. 基于多分量奇异熵的往复式压缩机故障分类[J]. 大连理工大学学报, 2007, 47(2): 196-200
作者姓名:苑宇  马孝江
作者单位:大连理工大学,精密与特种加工教育部重点实验室,辽宁,大连,116024;大连理工大学,精密与特种加工教育部重点实验室,辽宁,大连,116024
摘    要:
由于往复式机械振动信号的强烈非线性,对其进行特征提取较为困难.针对上述现象提出了一种计算信号多分量奇异熵的特征提取方法.通过局域波法提取出振动信号的各基本模式分量. 利用非线性动力学相空间重构理论适当选择嵌入维数与延迟时间,计算出往复机振动信号各基本模式分量的奇异熵值,提取出故障信息,并经自适应神经模糊推理系统(ANFIS)对故障特征进行分类.结果表明全部分类正确,达到了故障诊断的目的.

关 键 词:奇异熵  局域波  基本模式分量  ANFIS  故障诊断
文章编号:1000-8608(2007)02-0196-05
修稿时间:2005-11-232006-12-07

Classification of reciprocating compressor faults based on multi-component singular entropy
YUAN Yu,MA Xiao-jiang. Classification of reciprocating compressor faults based on multi-component singular entropy[J]. Journal of Dalian University of Technology, 2007, 47(2): 196-200
Authors:YUAN Yu  MA Xiao-jiang
Abstract:
Condition monitoring of reciprocating machines through the analysis of their vibrations is recognized to be a difficult issue,essentially because of the strong nonlinearity of the vibration signals.A new extracting method of multi-component singular entropy is put forward to solve this problem.Local wave method is combined with singular entropy to extract the features from the intrinsic mode function(IMF) of the vibration signals of reciprocating machines.Dimensions and time lags are given by reconstruction theory of nonlinear dynamics.And the features will be used as the input of adaptive neuro-fuzzy inference system(ANFIS) to classify and recognize the fault mode.The fault results are classified correctly.The conclusion shows that this method is feasible.
Keywords:singular entropy   local wave   IMF   ANFIS   fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大连理工大学学报》浏览原始摘要信息
点击此处可从《大连理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号