首页 | 本学科首页   官方微博 | 高级检索  
     

求解时变线性不等式离散算法的设计与分析
引用本文:郭东生,徐凤. 求解时变线性不等式离散算法的设计与分析[J]. 华侨大学学报(自然科学版), 2017, 0(5): 732-736. DOI: 10.11830/ISSN.1000-5013.201612043
作者姓名:郭东生  徐凤
作者单位:华侨大学 信息科学与工程学院, 福建 厦门 361021
摘    要:提出一种用于求解时变线性不等式的数值算法.通过引入一个时变向量(其每个元素都大于或等于零),将时变线性不等式转化为一个时变矩阵向量方程,并给出用于求解该方程的连续时间模型(即神经网络).采用欧拉差分公式将其离散化,推导得到相应的离散算法,并通过理论分析和数值实验验证该离散算法的有效性.结果表明:所提出的离散算法的稳态误差(SSRE)具有O(τ2)的变化规律,当τ的数值减小10倍,算法的稳态误差可减小100倍.

关 键 词:线性不等式  时变  离散算法  欧拉差分公式  稳态误差

Design and Analysis of Discrete Algorithm for Time-Varying Linear Inequality Solving
GUO Dongsheng,XU Feng. Design and Analysis of Discrete Algorithm for Time-Varying Linear Inequality Solving[J]. Journal of Huaqiao University(Natural Science), 2017, 0(5): 732-736. DOI: 10.11830/ISSN.1000-5013.201612043
Authors:GUO Dongsheng  XU Feng
Affiliation:College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract:A numerical algorithm for time-varying linear inequality solving is proposed. By introducing a time-varying vector(of which each element is greater than or equal to zero), we convert the time-varying linear inequality to a time-varying matrix-vector equation. A continuous-time model(i.e., the neural network)is then presented to solve such an equation. Using Euler’s difference formula to discretize the continuous-time model, we propose the corresponding discrete algorithm. Both theoretical analysis and numerical results further substantiate the efficacy of such algorithm. These results also indicate that the steady-state residual error(SSRE)of the proposed discrete algorithm changes in an O(τ2)manner with being τ the sampling gap; when the τ value decreases by 10 times, the SSRE reduces by 100 times.
Keywords:linear inequality  time-varying  discrete algorithm  Euler’s difference formula  steady-state residual error
本文献已被 CNKI 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号