首页 | 本学科首页   官方微博 | 高级检索  
     

多尺度卷积循环神经网络的情感分类技术
引用本文:吴琼,陈锻生. 多尺度卷积循环神经网络的情感分类技术[J]. 华侨大学学报(自然科学版), 2017, 0(6): 875-879. DOI: 10.11830/ISSN.1000-5013.201606077
作者姓名:吴琼  陈锻生
作者单位:华侨大学 计算机科学与技术学院, 福建 厦门 361021
摘    要:结合卷积神经网络对于特征提取的优势和循环神经网络的长短时记忆算法的优势,提出一种新的基于多尺度的卷积循环神经网络模型,利用卷积神经网络中的多尺寸滤波器提取出具有丰富上下文关系的词特征,循环神经网络中的长短时记忆算法将提取到的词特征与句子的结构联系起来,从而完成文本情感分类任务.实验结果表明:与多种文本情感分类方法相比,文中算法具有较高的精度.

关 键 词:文本情感分类  卷积神经网络  循环神经网络  长短时记忆  多尺度

Sentiment Classification With Multiscale Convolutional Recurrent Neural Network
WU Qiong,CHEN Duansheng. Sentiment Classification With Multiscale Convolutional Recurrent Neural Network[J]. Journal of Huaqiao University(Natural Science), 2017, 0(6): 875-879. DOI: 10.11830/ISSN.1000-5013.201606077
Authors:WU Qiong  CHEN Duansheng
Affiliation:College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
Abstract:Combining the advantages of convolution neural network(CNN)for feature extraction and recurrent neural network(RNN)for long shot-term memory, a new model based on multiscale convolutional recurrent neural network is proposed. This model utilize multi-size filter of CNN to extract word feature which contain a rich context information and use the long short-term memory algorithm of RNN to reflect the grammatical relations about the word and the sentence, and then completing the sentiment classification task. The experimental results show that: through comparing with many other sentiment classification, this new model has a high accuracy.
Keywords:text sentiment classification  convolutional neural network  recurrent neural network  long short-term memory  multiscale
本文献已被 CNKI 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号