首页 | 本学科首页   官方微博 | 高级检索  
     

计算机视觉在条形码缺陷检测中的应用
引用本文:严小红1,2. 计算机视觉在条形码缺陷检测中的应用[J]. 华侨大学学报(自然科学版), 2017, 0(1): 109-112. DOI: 10.11830/ISSN.1000-5013.201701021
作者姓名:严小红1  2
作者单位:1. 新疆交通职业技术学院 运输管理学院, 新疆 乌鲁木齐 831401; 2. 南京航空航天大学 航空宇航学院, 江苏 南京 210016
摘    要:提出一种新的基于计算机视觉技术的识别方法.通过各种计算机视觉算法的合理配置,达成对缺陷条形码的修正和识别.在预处理阶段,采取线性灰度化方法和Ostu阈值分割方法,增强黑色条纹和白色背景之间的对比度;在条纹定位阶段,采取Canny边缘检测和Hough变换,有效定位黑色条纹对应的直线特征.实验结果表明:该方法对缺陷条形码的识别是有效的.

关 键 词:缺陷条形码  机器视觉  Ostu分割  Hough变换

Application of Computer Vision in Defect Bar Code Detection
YAN Xiaohong1,' target="_blank" rel="external">2. Application of Computer Vision in Defect Bar Code Detection[J]. Journal of Huaqiao University(Natural Science), 2017, 0(1): 109-112. DOI: 10.11830/ISSN.1000-5013.201701021
Authors:YAN Xiaohong1,' target="  _blank"   rel="  external"  >2
Affiliation:1. School of Transportation Management, Xinjiang Vocational and Technical College of Communications, Urumqi 831401, China; 2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:A new recognition method based on computer vision technology is put forward. Through the reasonable configuration of various computer vision algorithms, the correction and identification of defective bar code is achieved. In the preprocessing stage, the linear gray level method and the Ostu threshold segmentation method are adopted to enhance the contrast between the black stripes and white background. In the phase of fringe orientation, Canny edge detection and Hough transform are adopted to effectively locate the linear features of black stripes. The experimental results show that this method is effective for the identification of defective bar code.
Keywords:defect bar code  machine vision  Ostu segmentation  Hough transform
本文献已被 CNKI 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号