首页 | 本学科首页   官方微博 | 高级检索  
     

关于指数Diophantine方程ax+by=cz的一个猜想
引用本文:乐茂华. 关于指数Diophantine方程ax+by=cz的一个猜想[J]. 黑龙江大学自然科学学报, 2003, 20(2): 10-14
作者姓名:乐茂华
作者单位:湛江师范学院,数学系,广东,湛江,524048
基金项目:Supported by the National Natural Science Foundation of China(10271104),the Guangdong Provincial Natural Science Foundation(011781),the Natural Science Foundation of Education Department of Guangdong Province(0161)
摘    要:设r是大于1的正奇数,m是偶数.设Ur,Vr是适合Vr+Ur√-1=(m+√-1)r的整数,又设a=|Vr|,b=|Ur|,c=m2+1.证明了当a≡2(mod4),b≡3(mod 4),m≥41r3/2时,方程ax+by=cz仅有正整数解(x,y,z)=(2,2,r).

关 键 词:指数Diophantine方程  正整数解  Terai猜想

A conjecture concerning the exponential Diophantine equation ax +by=cz
Abstract. A conjecture concerning the exponential Diophantine equation ax +by=cz[J]. Journal of Natural Science of Heilongjiang University, 2003, 20(2): 10-14
Authors:Abstract
Abstract:Let r be an odd integer with r>1, and let m be an even integer. Let a=|Vr|,b=|Ur|, c=m2+1, where Ur, Vr are integers satisfying V,+ Ur-1 = (m+-1)r. It will be prowed that if a=2(mod 4), b=3(mod 4) and m>41r3/2, then the equation ax+by=cz has only the positive integer solution (x,y,z)=(2, 2, r).
Keywords:Exponential Diophantine equation  positive integer solution  Terai conjecture
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号