首页 | 本学科首页   官方微博 | 高级检索  
     

基于SAM和GA/SVM的肿瘤基因表达谱分类算法
引用本文:李小波. 基于SAM和GA/SVM的肿瘤基因表达谱分类算法[J]. 杭州师范学院学报(自然科学版), 2008, 7(3): 202-205
作者姓名:李小波
作者单位:浙江教育学院信息学院,浙江杭州,310012
摘    要:
基因芯片技术在肿瘤分型分类的研究中得到了广泛的应用.为了处理肿瘤基因表达谱数据,建立肿瘤分类预测模型,文中采用基因表达差异显著性分析方法,支持向量机,遗传算法相结合的多步骤降维分类方法.采用该方法处理大肠癌和白血病数据集,筛选到基因数量较少并且分类准确度较高的特征基因子集.实验结果表明,文中的方法可以快速有效地筛选肿瘤特征基因,获得更好的分类效果.

关 键 词:基因表达谱  分类  基因表达差异显著性分析方法(SAM)  遗传算法(GA)  支持向量机(SVM)
文章编号:1674-232X(2008)03-0202-04
修稿时间:2008-04-02

The Approach for Classification of Tumor Gene Expression Data Based on SAM and GA/SVM
LI Xiao-Bo. The Approach for Classification of Tumor Gene Expression Data Based on SAM and GA/SVM[J]. Journal of Hangzhou Teachers College(Natural Science), 2008, 7(3): 202-205
Authors:LI Xiao-Bo
Affiliation:LI Xiao-Bo (School of Informatics, Zhejiang Education Institute, Hangzhou 310012, China)
Abstract:
Microarray technology has been widely used in the research of tumor classification. To analyze gene expression data and establish prediction models of tumor classification, a multi-step gene dimensionality reduction method is proposed. The method combines with significant analysis of microarrays (SAM), genetic algorithm (GA) and support vector machine (SVM). The approach is evaluated over the two datasets of colorectal cancer and leukemia, a tumor related subset with small gene numbers and high classification accuracy is selected. The experiment results show the efficiency and effectiveness of the proposed method for screening tumor related genes and achieving better classification accuracy.
Keywords:gene expression, classification  significant analysis of microarrays (SAM)  genetic algorithm (GA)  support vector machine (SVM)
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号