首页 | 本学科首页   官方微博 | 高级检索  
     

四色和K色图着色问题的瞬态混沌神经网络解法
引用本文:王秀宏,王正欧,乔清理. 四色和K色图着色问题的瞬态混沌神经网络解法[J]. 系统工程理论与实践, 2002, 22(5): 92-96. DOI: 10.12011/1000-6788(2002)5-92
作者姓名:王秀宏  王正欧  乔清理
作者单位:(1)天津大学管理学院;(2)上海交通大学生命科学技术学院
基金项目:国家自然科学基金 ( 79970 0 4 2 )
摘    要:
首先给出了用神经网络求解四色图着色问题的神经网络结构和能量函数 ,然后采用了具有瞬态混沌特性的神经网络 ( TCNN)来解四色图着色问题 .由于引入具有复杂动态特性的瞬态混沌使得该法具有很强的搜索全局最优解的能力 .仿真结果表明 ,用该法解四色图着色问题总能保证使能量函数收敛到最优解 ,有效避免了用传统的 Hopfield人工神经网络 ( HNN)解此问题时极易陷入局部极小的缺陷 ,并且收敛速度更快 .另外我们还用此法求解了属于 NP-完全问题的 K色图着色问题.

关 键 词:神经网络  瞬态混沌  图的着色问题   
文章编号:1000-6788(2002)05-0092-05
修稿时间:2000-08-03

Artificial Neural Network with Transient Chaos for Four-Coloring Map Problems and K-Colorability Problems
WANG Xiu-hong+,WANG Zheng-ou+,QIAO Qing-li+. Artificial Neural Network with Transient Chaos for Four-Coloring Map Problems and K-Colorability Problems[J]. Systems Engineering —Theory & Practice, 2002, 22(5): 92-96. DOI: 10.12011/1000-6788(2002)5-92
Authors:WANG Xiu-hong+  WANG Zheng-ou+  QIAO Qing-li+
Affiliation:(1)School of Management,Tianjin University;(2)School of Life Science & Biotechnology,Shanghai Jiaotong University
Abstract:
Neural network and computational energy are presented for solving four-coloring map problem. Then, the four-coloring map problems are solved by a neural network model with transient chaos (TCNN) which have higher ability of quickly searching for the globally optimal solution because of its complicated chaotic dynamics. Numerical simulations of four-coloring map problem show that TCNN would not be stuck into local minima like the conventional Hopfield neural network (HNN) and always guaranteed that computational energy converged to the globally optimal solution. The TCNN is extended for solving $K$-colorability problem which is one of NP-complete problems.
Keywords:neural network  transient chaos  colorability problem
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号