首页 | 本学科首页   官方微博 | 高级检索  
     

Genetic Algorithm-Based Approaches for Optimizing S-Boxes
引用本文:YIN Xinchun1,2,YANG Jie1,XIE Li2 1. Department of Computer Science and Engineering,Yangzhou University,Yangzhou 225009,Jiangsu,China, 2. State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210093,Jiangsu,China. Genetic Algorithm-Based Approaches for Optimizing S-Boxes[J]. 武汉大学学报:自然科学英文版, 2007, 12(1): 131-134. DOI: 10.1007/s11859-006-0241-8
作者姓名:YIN Xinchun1  2  YANG Jie1  XIE Li2 1. Department of Computer Science and Engineering  Yangzhou University  Yangzhou 225009  Jiangsu  China   2. State Key Laboratory for Novel Software Technology  Nanjing University  Nanjing 210093  Jiangsu  China
作者单位:YIN Xinchun1,2,YANG Jie1,XIE Li2 1. Department of Computer Science and Engineering,Yangzhou University,Yangzhou 225009,Jiangsu,China; 2. State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210093,Jiangsu,China
基金项目:Foundetlon item: Supported by the National Natural Science Foundation of China (60473012)
摘    要:
0 Introduction Being as unique nonlinear components of block ci- pher algorithms, S-boxes provide the most important confusion effect, and directly influence the security of the algorithms. There are many ways to construct S-boxes[1-5]. On one hand, diffe…

关 键 词:计算机 安全保密 遗传算法 系统优化理论
文章编号:1007-1202(2007)01-0131-04
收稿时间:2006-04-20

Genetic algorithm-based approaches for optimizing S-boxes
Yin Xinchun,Yang Jie,Xie Li. Genetic algorithm-based approaches for optimizing S-boxes[J]. Wuhan University Journal of Natural Sciences, 2007, 12(1): 131-134. DOI: 10.1007/s11859-006-0241-8
Authors:Yin Xinchun  Yang Jie  Xie Li
Affiliation:(1) Department of Computer Science and Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China;(2) State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210093, Jiangsu, China
Abstract:
Multi-objective genetic algorithm is much suitable for solving multi-objective optimization problems. By use of Genetic algorithm, the optimization of S-boxes is explored in this paper. Results of the experiments show that, with heuristic mutation strategy, the algorithm has high searching efficiency and fast convergence speed. Meanwhile, we also have take the avalanche probability of S-boxes into account, besides nonlinearity and difference uniformity. Under this method, an effective genetic algorithm for 6×6 S-boxes is provided and a number of S-boxes with good cryptographic capability can be obtained. Biography: YIN Xinchun (1962–), male, Professor, Ph.D., research direction: parallel and distributed computing, information security.
Keywords:S-boxes   nonlinearity   difference uniformity   avalanche probability   variance   genetic algorithm   heuristic mutation strategy
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号