首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法模拟退火算法解决修边损耗问题
引用本文:司马英,王源. 基于遗传算法模拟退火算法解决修边损耗问题[J]. 科技信息, 2012, 0(31): 82-83
作者姓名:司马英  王源
作者单位:[1]中国铁通江苏省公司南京分公司,江苏南京210036 [2]盐城工学院,江苏盐城224051
摘    要:纸箱包装行业是一个传统的产业,在纸箱生产中需要拼单来降低修边损耗以减少成本。本文根据生产上的实际经验提出了问题的数学模型,针对该模型,本文将遗传算法和模拟退火算法结合,解决了遗传算法的收敛过快以及局部搜索能力不强的问题。在选择操作中直接保存优秀个体,来增强算法的收敛性。在变异和交叉操作中采用自适应的变异和交叉概率,增强了搜索解空间的均匀性,并引入了记忆功能,最终获得问题的近似最优解。

关 键 词:遗传算法  模拟退火算法

Genetic Simulated Annealing Algorithm Solve Resumption Problem in Carton Manufactory
Abstract:Carton packing industry is a traditional manufacture industry. The factories need to combine orders to save the materials and cut down resumptions at the same time. This article raises a optimizing model with its experience, and uses Simulated Annealing Algorithm and Genetic Algorithm to solve the slow convergence and weak partial searching ability of Genetic Algorithm. The article saves good results directly to strengthen the algorithm convergence at the selection operation. And uses self-adapted cross and mutation probability to make the searching scope more equally, and the article also introduces memory function to get a near best solution.
Keywords:Genetic algorithm  Simulated annealing algorithm
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号