首页 | 本学科首页   官方微博 | 高级检索  
     

常数量曲率黎曼度量之共形形变
引用本文:赵培标. 常数量曲率黎曼度量之共形形变[J]. 信阳师范学院学报(自然科学版), 2003, 16(2): 146-149
作者姓名:赵培标
作者单位:南京理工大学,应用数学系,江苏,南京,210094
基金项目:Supported by NNSF(1 9771 0 48) and the Mid-Young Main Teacherof Anhui Province(JW990 1 5 5 )
摘    要:
本文考查光滑黎曼流形(M^n,g)(n≥2)的共形形变.证明了如下结论:存在共形于度量g的黎曼度量g^-使得g^-的曲率R^-等于一个事先给定的函数K.

关 键 词:光滑黎曼流形 黎曼度量 共形形变 常数量曲率 椭圆方程 上解 微分几何

Conformal deformation of a Riemannian metric to constant scalar curvature
ZHAO Pei-biao. Conformal deformation of a Riemannian metric to constant scalar curvature[J]. Journal of Xinyang Teachers College(Natural Science Edition), 2003, 16(2): 146-149
Authors:ZHAO Pei-biao
Abstract:
This paper deals with the conformal deformation of the smooth Riemannian manifold(Mn,g)(n≥2).It is proved,in some case,there exists a Riemannian metric g which is conformal to g such that the scalar curvature R of g is equal to K(K is a given function).
Keywords:conformal deformation  elliptic equation  upper solution
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号