首页 | 本学科首页   官方微博 | 高级检索  
     

基于等价关系的双粒度粗糙集模型
作者单位:;1.文山学院数学学院;2.山西大学计算机与信息技术学院
摘    要:Pawlak粗糙集模型主要关注的是论域上一个等价关系导出的集合的近似,是单粒度的.通过用论域上的2个等价关系定义集合的近似,把单粒度的Pawlak粗糙集模型扩展到双粒度粗糙集模型.研究了双粒度粗糙集模型的一些数学性质,定理表明Pawlak粗糙集的许多性质是双粒度粗糙集性质的特殊情况,并且使用双粒度定义的近似度量优于单粒度定义的近似度量,该度量更适合描述概念的精度并更利于解决用户的需求.

关 键 词:等价关系  粗糙集  双粒度  近似度量

An optimistic dual-granularity rough set model based on equivalence relation
Affiliation:,School of Mathematics,Wenshan University,School of Computer and Information Technology,Shanxi University
Abstract:As for granular computing,the Pawlak rough set model is mainly focused on the approximation of sets described by one equivalence relation on the universe.And the classical rough set model is researched by single granulation.The paper extends the Pawlak rough set model to a dual-granulation rough set model,where the set approximations are defined by using dual-equivalences on the universe.The mathematical properties of the dual-granulation rough set are investigated.The theorems showed that some properties of the Pawlak rough set are present under the special circumstances of the dual-granulation rough set,while the approximation measure of this set described by using dual-granulation is superior to that by using the single granulation,which is good for describing the concept more accurately and solving the problem according to user requirements.
Keywords:equivalence relation  rough set  optimistic dual-granulation  approximation measure
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号