首页 | 本学科首页   官方微博 | 高级检索  
     

BRDF的遗传算法和遗传模拟退火算法建模及比较
引用本文:张涵璐,吴振森,张昌民,曹运华. BRDF的遗传算法和遗传模拟退火算法建模及比较[J]. 系统工程与电子技术, 2010, 32(7): 1529-1531. DOI: 10.3969/j.issn.1001506X.2010.07.041
作者姓名:张涵璐  吴振森  张昌民  曹运华
作者单位:(西安电子科技大学理学院, 陕西 西安 710071)
摘    要:
结合遗传算法和模拟退火算法,构造出具有全局搜索优化特性的遗传模拟退火算法。根据空间目标表面的多组多角度双向反射分布函数(bidirectional reflectance distribution function, BRDF)实验数据和统计模型,获得样片BRDF五参数模型参数值及2D、3D的BRDF分布。比较基本遗传算法和遗传模拟退火算法在迭代次数、计算时间、参数值及精度等之间的差异并分析其原因。遗传模拟退火算法更适用于BRDF的统计建模。

关 键 词:双向反射分布函数  建模  遗传算法  遗传模拟退火算法

Modeling and comparison of BRDF with GA and GSAA
ZHANG Han-lu,WU Zhen-sen,ZHANG Chang-min,CAO Yun-hua. Modeling and comparison of BRDF with GA and GSAA[J]. System Engineering and Electronics, 2010, 32(7): 1529-1531. DOI: 10.3969/j.issn.1001506X.2010.07.041
Authors:ZHANG Han-lu  WU Zhen-sen  ZHANG Chang-min  CAO Yun-hua
Affiliation:(School of Science, Xidian Univ., Xi’an 710071, China)
Abstract:
Combining the basic genetic algorithm (GA) with the simulated annealing algorithm, a genetic simulated annealing algorithm (GSAA) is obtained with the character of global searching and optimum. Both GA and GSAA are used to fit bistatic mulitiangle data of experiment to the bidirectional reflectance distribution function (BRDF) statistical model. The parameters of the model and the 2D and 3D BRDF are obtained. The differences and causations between GA and GSAA in the iterative numbers, time, precision, data fitting and parameters are compared and analyzed. GA and GSAA held for BRDF statistic modeling.
Keywords:bidirectional reflectance distribution function  modeling  genetic algorithms  genetic simulated annealing algorithms
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号