首页 | 本学科首页   官方微博 | 高级检索  
     

基于多Agent动态影响图的协作实现
引用本文:姚宏亮,王浩,张佑生,汪荣贵,方宝富. 基于多Agent动态影响图的协作实现[J]. 系统仿真学报, 2007, 19(14): 3270-3275
作者姓名:姚宏亮  王浩  张佑生  汪荣贵  方宝富
作者单位:合肥工业大学,计算机科学与技术系,安徽,合肥,230009
基金项目:国家自然科学基金;安徽省自然科学基金
摘    要:将MAIDs在时间上进行扩展,提出一种新决策模型——多Agent动态影响图(MADIDs),对动态环境中的协作关系进行建模;给出MADIDs的一种分层分解的分布近似方法,进而通过将决策结点和效用结点的推理引入到BK算法中,给出MADIDs环境模型的一种扩展BK(EBK)近似推理算法;引入一种BP神经网络学习MADIDs的局部效用函数。最后,针对一个表示协作关系的MADID模型,进行算法比较和仿真实验,实验结果显示了MADIDs模型的有效性。

关 键 词:多Agent影响图  多Agent动态影响图  联合树  BK算法
文章编号:1004-731X(2007)14-3270-06
收稿时间:2006-06-05
修稿时间:2006-06-052006-08-23

Coordination Problems Based on Multi-Agent Dynamic Influence diagrams
YAO Hong-liang,WANG Hao,ZHANG You-sheng,WANG Rong-gui,FANG Bao-fu. Coordination Problems Based on Multi-Agent Dynamic Influence diagrams[J]. Journal of System Simulation, 2007, 19(14): 3270-3275
Authors:YAO Hong-liang  WANG Hao  ZHANG You-sheng  WANG Rong-gui  FANG Bao-fu
Affiliation:Department of Computer Science and Technology, Hefei University of Technology, Hefei 23009, China
Abstract:Multi-Agent dynamic influences(MADIDs)were proposed by extending MAIDs over time,and coordination relationships could be modeled in dynamic environment.Based on the hierarchical decomposition,a method of distribution approximation was discussed;further,an extensional BK(EBK)algorithm was given by adding inference of decision nodes and utility nodes to BK algorithm.Another,a BP Neural Network was given to learn local utility functions of MADIDs.On a dynamic coordination model,the algorithms were compared and the coordination relationships were simulated,and the results of experiments show the validity of MADIDs.
Keywords:MAIDs   MADIDs   Junction Tree   BK algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号