首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征联合和偏最小二乘降维的手势识别
引用本文:张世辉,周绯菲,郭顺超. 基于特征联合和偏最小二乘降维的手势识别[J]. 燕山大学学报, 2014, 0(1): 41-48
作者姓名:张世辉  周绯菲  郭顺超
作者单位:[1]燕山大学信息科学与工程学院,河北秦皇岛066004 [2]河北省计算机虚拟技术与系统集成重点实验室,河北秦皇岛066004 [3]交通运输部管理干部学院计算机系,北京101601
基金项目:基金项目:河北省自然科学基金资助项目(F2010001276)
摘    要:针对以往手势识别研究中更关注识别率而弱化实时性的情况,首次将偏最小二乘降维思想引入手势识别领域,提出一种基于特征联合和偏最小二乘降维的手势识别方法。首先进行手势分割,在此基础上提取手势样本的梯度方向直方图和局部二值模式特征,并将二者进行联合。然后采用偏最小二乘法对手势联合特征进行降维,并将降维后的手势训练样本特征输入到支持向量机中进行分类训练。最后用训练好的支持向量机对降维后的手势测试样本进行识别测试。基于Jochen Triesch手势库及自制手势库的实验结果表明,同已有方法相比,本文所提方法在取得较高手势识别率的同时也取得了较好的实时性。

关 键 词:手势识别  特征联合  偏最小二乘法  梯度方向直方图  局部二值模式

Gesture recognition based on feature combination and partial least squares dimensionality reduction
ZHANG Shi-hui,ZHOU Fei-fei,GUO Shun-chao. Gesture recognition based on feature combination and partial least squares dimensionality reduction[J]. Journal of Yanshan University, 2014, 0(1): 41-48
Authors:ZHANG Shi-hui  ZHOU Fei-fei  GUO Shun-chao
Affiliation:1. College of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China; 2. The Key Laboratory for Computer Virtual Technology and System Integration of HeBei Province, Qinhuangdao, Hebei 066004, China; 3 Department of Computer Science, Management Cadre Institute of Transportation Ministry, Beijing 101601, China)
Abstract:As it is known that the research had paid more attention to recognition rate rather than real-time performance in the past, in this paper, the idea of partial least squares dimensionality reduction is introduced to the field of gesture recognition for the first time and a novel gesture recognition approach based on partial least squares and support vector machine is proposed. Firstly, the sample features of histograms of oriented gradients and local binary patterns are extracted and combined based on gesture segmen- tation. Secondly, the partial least squares method is adopted to reduce the dimension of the combined features and the combined features after dimensionality reduction is utilized to train the support vector machine. Finally, the gesture testing samples are tested with the trained support vector machine. Experimental results based on the gestures in Jochen Triesch and self-made gesture database show, compared with the existing methods, the proposed approach can achieve better performance on both recognition rate and real-time.
Keywords:gesture recognition  feature combination  partial least squares  histograms oforiented gradients  local binary pattems
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号