首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers
Authors:Rozan  Lassman  Ridge  Luther
Institution:College of Marine Studies, University of Delaware, 19958, USA. trozan@udel.edu
Abstract:The availability and toxicity of trace metals in fresh water are known to be regulated by the complexation of free metal ions with dissolved organic matter. The potential role of inorganic sulphides in binding trace metals has been largely ignored because of the reduced persistence of sulphides in these oxic waters. However, nanomolar concentrations of copper and zinc sulphides have been observed in four rivers in Connecticut and Maryland. Here we report dissolved (< 0.2 microm particle diameter) sulphide concentrations ranging up to 600 nM, with more than 90% being complexed by copper, iron and zinc. These complexes account for up to 20% of the total dissolved Fe and Zn and 45% of the total dissolved Cu. Fourier transform mass spectrometry reveals that these complexes are not simple M(HS)+ protonated species but are higher-order unprotonated clusters (M3S3, M4S6, M2S4), similar to those found in laboratory solutions and bio-inorganic molecules. These extended structures have high stability constants and are resistant to oxidation and dissociation, which may help control the toxicity of these and other less abundant, but more toxic, trace metals, such as silver, cadmium and mercury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号