首页 | 本学科首页   官方微博 | 高级检索  
     

超短期风电功率预测的混合深度学习模型
引用本文:刘旭丽1,莫毓昌1,吴哲1,严珂2. 超短期风电功率预测的混合深度学习模型[J]. 华侨大学学报(自然科学版), 2022, 0(5): 668-676. DOI: 10.11830/ISSN.1000-5013.202108028
作者姓名:刘旭丽1  莫毓昌1  吴哲1  严珂2
作者单位:1. 华侨大学 计算科学福建省高校重点实验室, 福建 泉州 362021;2.中国计量大学 信息工程学院, 浙江 杭州 310018
摘    要:针对风电功率预测(WPF)问题,提出一种基于离散小波变换(DWT)、时间卷积网络(TCN)和长短期记忆(LSTM)神经网络的混合深度学习模型(DWT-TCN-LSTM),对超短期风电功率进行预测.将DWT-TCN-LSTM模型分别与差分整合移动平均自回归(ARIMA)模型,支持向量回归(SVR)模型,长短期记忆神经网络模型和卷积长短期记忆(TCN-LSTM)混合模型进行对比实验,通过对称平均绝对百分比误差(SMAPE),均方根误差(RMSE)和平均绝对误差(MAE)3种评价指标值对各个模型进行评价.实验结果表明:DWT-TCN-LSTM模型具有较好的预测性能.

关 键 词:风力发电  超短期预测  离散小波变换  时间卷积网络  长短期记忆神经网络

Hybrid Deep Learning Model Based on Super-Short-Term Wind Power Forecasting
LIU Xuli1,MO Yuchang1,WU Zhe1,YAN Ke2. Hybrid Deep Learning Model Based on Super-Short-Term Wind Power Forecasting[J]. Journal of Huaqiao University(Natural Science), 2022, 0(5): 668-676. DOI: 10.11830/ISSN.1000-5013.202108028
Authors:LIU Xuli1  MO Yuchang1  WU Zhe1  YAN Ke2
Affiliation:1. Fujian Provincial Key Laboratory of Computational Science, Huaqiao University, Quanzhou 362021, China; 2. College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Abstract:Aiming at the problem of wind power forecasting(WPF), a hybrid deep learning model(DWT-TCN-LSTM)based on discrete wavelet transform(DWT), time convolutional network(TCN)and long and short-term memory(LSTM)neural network is proposed to predict the super-short-term wind power. The DWT-TCN-LSTM model is compared experimentally with the differential integrated moving average autoregressive model(ARIMA), support vector regression(SVR)model, long and short-term memory neural network model and convolutional long and short-term memory(TCN-LSTM)mixed model. The each model is evaluated through three evaluation metrics of symmetric mean absolute percent error(SMAPE), root mean square error(RMSE)and mean absolute error(MAE). The experimental results show that: the DWT-TCN-LSTM model has better prediction performance.
Keywords:wind power generation  super-short-term prediction  discrete wavelet transform  time convolutional network  long and short-term memory neural network
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号