首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Regulation of cell movement is mediated by stretch-activated calcium channels.
Authors:J Lee  A Ishihara  G Oxford  B Johnson  K Jacobson
Institution:Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599-7090, USA. jlee@uconnvm.uconn.edu
Abstract:Intracellular calcium regulates many of the molecular processes that are essential for cell movement. It is required for the production of actomyosin-based contractile forces, the regulation of the structure and dynamics of the actin cytoskeletons, and the formation and disassembly of cell-substratum adhesions. Calcium also serves as a second messenger in many biochemical signal-transduction pathways. However, despite the pivotal role of calcium in motile processes, it is not clear how calcium regulates overall cell movement. Here we show that transient increases in intracellular calcium, Ca2+]i, during the locomotion of fish epithelial keratocytes, occur more frequently in cells that become temporarily 'stuck' to the substratum or when subjected to mechanical stretching. We find that calcium transients arise from the activation of stretch-activated calcium channels, which triggers an influx of extracellular calcium. In addition, the subsequent increase in Ca2+]i is involved in detachment of the rear cell margin. Thus, we have defined a mechanism by which cells can detect and transduce mechanical forces into biochemical signals that can modulate locomotion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号