首页 | 本学科首页   官方微博 | 高级检索  
     


Performance prediction for Grid workflow activities based on features-ranked RBF network
Authors:Wang Jie  Duan Rubing  Farrukh Nadeem
Affiliation:1. Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100080,P.R.China;Institute of Computer Science,University of Innsbruck,Innsbruck,Austria;Graduate University of Chinese Academy of Sciences,Beijing 100049,P.R.China
2. Institute of Computer Science,University of Innsbruck,Innsbruck,Austria
Abstract:Accurate performance prediction of Grid workflow activities can help Grid schedulers map activities to appropriate Grid sites.This paper describes an approach based on features-ranked RBF neural network to predict the performance of Grid workflow activities.Experimental results for two kinds of real world Grid workflow activities are presented to show effectiveness of our approach.
Keywords:performance prediction  radial basis function (RBF) neural network  features rank  Grid  workflow activities
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号