首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊马尔科夫理论的机动智能体决策模型
引用本文:杨萍,毕义明,刘卫东. 基于模糊马尔科夫理论的机动智能体决策模型[J]. 系统工程与电子技术, 2008, 30(3): 511-514
作者姓名:杨萍  毕义明  刘卫东
作者单位:第二炮兵工程学院,陕西,西安,710025
摘    要:针对机动作战仿真背景,运用智能体理论研究战术机动智能体的最优机动决策问题。对传统的马尔科夫决策模型进行了扩展,通过定义攻击威胁下机动智能体的模糊状态空间、模糊状态转移规律和决策收益,建立了模糊战术机动决策模型,较好地描述了实际作战决策中的模糊认知、分析、判断等信息处理过程。通过引入强化学习手段,提出融合指挥员先验信息的Q学习算法和状态动态分类识别算法,对状态转移规律不易确定时模型的求解进行了研究;仿真实验验证了模型和算法的有效性。

关 键 词:战术机动决策  智能体  建模  模糊理论  马尔科夫决策理论  强化学习
文章编号:1001-506X(2008)03-0511-04
修稿时间:2007-01-05

Decision-making model of tactics maneuver agent based on fuzzy Markov decision theory
YANG Ping,BI Yi-ming,LIU Wei-dong. Decision-making model of tactics maneuver agent based on fuzzy Markov decision theory[J]. System Engineering and Electronics, 2008, 30(3): 511-514
Authors:YANG Ping  BI Yi-ming  LIU Wei-dong
Abstract:For the background of maneuver operational simulation,the problem of optimal maneuver decision based on agent theory is studied.The conventional Markov decision model is extended.A fuzzy tactics maneuver decision-making model is proposed.The model defines the fuzzy state space,the fuzzy state transfer regularity and decision lucre,which preferably describes the information processing of fuzzy cognition,analysis and judgement under attack threaten circumstance in realistic operations.Further,reinforcement learning is introduced to solve the model when the state transfer regularity cannot make sure.Dynamic classify of state space,identification of observation state and Q-learning with prior knowledge are researched in reinforcement learning process.The simulation experiment is carried out and the result testifies the validity of the model and algorithm.
Keywords:tactics maneuver decision  agent  modeling  fuzzy theory  Markov decision theory  reinforcement learning
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号