首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis
Authors:Friml Jirí  Vieten Anne  Sauer Michael  Weijers Dolf  Schwarz Heinz  Hamann Thorsten  Offringa Remko  Jürgens Gerd
Institution:Zentrum für Molekularbiologie der Pflanzen, Universit?t Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany. jiri.friml@zmbp.uni-tuebingen.de
Abstract:Axis formation occurs in plants, as in animals, during early embryogenesis. However, the underlying mechanism is not known. Here we show that the first manifestation of the apical-basal axis in plants, the asymmetric division of the zygote, produces a basal cell that transports and an apical cell that responds to the signalling molecule auxin. This apical-basal auxin activity gradient triggers the specification of apical embryo structures and is actively maintained by a novel component of auxin efflux, PIN7, which is located apically in the basal cell. Later, the developmentally regulated reversal of PIN7 and onset of PIN1 polar localization reorganize the auxin gradient for specification of the basal root pole. An analysis of pin quadruple mutants identifies PIN-dependent transport as an essential part of the mechanism for embryo axis formation. Our results indicate how the establishment of cell polarity, polar auxin efflux and local auxin response result in apical-basal axis formation of the embryo, and thus determine the axiality of the adult plant.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号