首页 | 本学科首页   官方微博 | 高级检索  
     

基于LMI的随机时滞神经网络的全局渐近稳定性分析
引用本文:杨红艳,夏茂辉,于玲,李海龙. 基于LMI的随机时滞神经网络的全局渐近稳定性分析[J]. 郑州大学学报(理学版), 2011, 0(3)
作者姓名:杨红艳  夏茂辉  于玲  李海龙
作者单位:燕山大学理学院;
基金项目:燕山大学博士基金资助项目,编号B272
摘    要:
研究了一类时变时滞与分布时滞的随机神经网络模型的全局渐近稳定性,该模型考虑了神经网络的随机扰动性.通过构造适当的Lyapunov泛函,以线性矩阵不等式的形式给出了系统全局渐近稳定的充分条件.最后,数值算例说明了结果的正确性.

关 键 词:随机神经网络  分布时滞  全局渐近稳定  Lyapunov泛函  

Global Asymptotic Stability Analysis of Class of Stochastic Delay Neural Networks
YANG Hong-yan,XIA Mao-hui,YU Ling,LI Hai-long. Global Asymptotic Stability Analysis of Class of Stochastic Delay Neural Networks[J]. Journal of Zhengzhou University(Natrual Science Edition), 2011, 0(3)
Authors:YANG Hong-yan  XIA Mao-hui  YU Ling  LI Hai-long
Affiliation:YANG Hong-yan,XIA Mao-hui,YU Ling,LI Hai-long(School of Science,Yanshan University,Qinhuangdao 066004,China)
Abstract:
Global asymptotic stability for a class of stochastic neural networks with time-varying delays and distributed delay was studied.By constructing suitable Lyapunov functionals and combining with matrix inequality technique,a simple sufficient condition was presented for global asymptotic stability in the mean square of stochastic neural networks with time-varying delays and distributed delay.By LMI toobox,it demonstrated the usefulness of the new proposed global asymptotic stability criteria.
Keywords:stochastic neural networks  distributed delay  global asymptotic stability  Lyapunov functionals  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号