摘 要: | 针对油气长输管道采用无人机巡检时所拍摄的红外图像去模糊问题,本文利用图像通道的先验知识提升模糊图像质量,分别基于双边滤波和非盲去模糊网络NBDN去除人工伪影的方法达到更佳的图像复原效果。首先,基于暗通道先验知识,在最大后验的优化框架中添加暗通道的L_0正则项;然后使用图像梯度的L_0正则项,代替图像像素的L_0正则项作为潜在图像的正则化约束,使用迭代交替估计图像模糊核和中间潜在图像;采用半二次分裂方法和查表法间接优化求解,估计中间潜在图像;采用双线性插值估计图像模糊核,通过对图像进行上下采样,构建图像金字塔,进而利用共轭梯度法直接优化求解。最后,利用估计的模糊核,使用基于超拉普拉斯先验的图像非盲去模糊方法得到潜在图像I_1;使用基于L_0正则化的非盲去模糊方法得到潜在图像I_0;计算估计的潜在图像I_1和I_0之间的差值映射,从I_1中减去双边滤波过滤后的差分图,得到最终的潜在图像I。将本文算法在低照度图像、含有饱和像素的图像、真实图像以及红外摄像图等图像数据上进行实验,相对于其他图像去模糊算法,实验结果表明本文提出的方法在多种模糊图像复原效果上,均具有较强的竞争力。
|