摘 要: | 目前,音乐歌词情感分类大多以二标签极性情感为主,多情感标签分类却很少,并且对于情感性不确定的歌词来说,得到的分类性能并不高。为了解决多情感标签研究分类的不足以及提高分类准确性,本文提出了一种利用Word2Vec词嵌入技术,并使用多核卷积神经网络作为分类器的音乐歌词多情感分类方法。该方法首先结合音乐歌词文本,进行数据预处理和可视化分析。其次利用Word2Vec词嵌入提取歌词局部特征,构建特征情感向量,挖掘歌词中情感信息,将歌词转化为更利于分类器模型输入的词向量。最后在分类器中,选用卷积神经网络模型,并在此基础上采用不同高度卷积核的方式构建新模型以此得到多情感分类。实验结果表明,音乐歌词多情感分类的结果达到94.26%,与传统CNN相比,分类精确率提高了6.86%,取得了良好性能。
|