摘 要: | 影响股票价格变动的因素有很多,且股票数据具有高度的非线性和时变性等特征,因而采用经典线性时间序列模型可能无法完全提取非线性部分的信息.针对这一问题,建立了BP神经网络模型、PCA-BP神经网络模型、GA-BP神经网络模型和ARIMA(6,1,6)模型对上证综合指数的收盘价格进行预测.计算各预测模型下的统计指标RMSE和MAE,并对4个模型进行对比分析.结果表明,GA-BP神经网络预测模型与其它三种模型相比具有更小的误差,也就是说GA-BP神经网络预测模型对上证综合指数的收盘价格预测效果更好.
|