首页 | 本学科首页   官方微博 | 高级检索  
     

基于矩阵的MBR主方向关系的反关系
引用本文:杨楠,石伟铂. 基于矩阵的MBR主方向关系的反关系[J]. 燕山大学学报, 2007, 31(3): 229-233
作者姓名:杨楠  石伟铂
作者单位:燕山大学,电气工程学院,河北,秦皇岛,066004
摘    要:求解二维空间区域物体的反方向关系是空间推理的重要手段,本文总结了区间代数和矩形代数的反关系求解方法,并介绍了MBR(Minimum Bounding Rectangle)主方向关系的求解方法,利用矩阵方向关系模型和MBR模型之间的关系,给出了基于矩阵的反方向关系求解方法。

关 键 词:反方向关系  最小边界矩形  方向关系矩阵
文章编号:1007-791X(2007)03-0229-05
修稿时间:2007-01-10

Inverse direction relations of MBR cardinal directions based on matrix
YANG Nan,SHI Wei-bo. Inverse direction relations of MBR cardinal directions based on matrix[J]. Journal of Yanshan University, 2007, 31(3): 229-233
Authors:YANG Nan  SHI Wei-bo
Affiliation:1. College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
Abstract:The reasoning of inverse direction relation on two dimensional regions is the important measure in spatial relationing area. By using the connection of MBR and direction relation matrix, the method of computing the inverse direction relations based on MBR and rectangle algebra is introduced, and the method of computing the inverse direction relations based on matrix is given.
Keywords:inverse direction relations   minimum bounding rectangle   direction relation matrix
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号