摘 要: | 为了挖掘电力负荷数据中的潜藏信息,提高负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、优化长短期神经网络(long-term and short-term memory network,LSTM)、改进的粒子群算法(improve particle swarm optimization,IPSO)优化门控循环单元(gated recurrent unit neural network,GRU)的混合预测模型。首先,使用相关性分析确定确定输入因素,再将负荷数据运用VMD算法结合样本熵分解为一系列本征模态分量(intrinsic mode fuction,IMF)和残差量,更加合理地确定分解层数和惩罚因子;其次,根据过零率将这些量划分为低频和高频,低频分量使用LSTM网络,高频分量利用IPSO-GRU网络分别进行预测;最后,将预测结果重构得到电力负荷的最终结果。仿真结果表明,相对于其它常规模型,该混合模型可有效的提取模态特征,具有更高的预测精度。
|