摘 要: | 针对脉冲耦合神经网络(pulse coupled neural network,PCNN)模型需要人工方式确定循环迭代次数,以及香农熵定义中基于对数函数存在零点处无意义的缺陷和对数运算影响处理速度等问题,提出了一种基于最小倒数交叉熵自适应生成迭代次数的PCNN图像分割算法.首先,对传统的PCNN模型进行简化,并对神经元的反馈输入函数、连接输入函数和动态阈值函数进行修正;然后,应用二维倒数交叉熵的分解算法,通过两个一维倒数交叉熵的组合获得二维倒数交叉熵;最后,采用最小倒数交叉熵准则确定PCNN网络的循环迭代次数,实现对图像的最优分割.仿真实验验证了该方法的有效性.
|