首页 | 本学科首页   官方微博 | 高级检索  
     

基于ISSA-SVM的钻井卡钻事故预测
作者姓名:陈晓  张奇志  王鑫  黄圣杰  陈浩宇
作者单位:西安石油大学
基金项目:陕西省科学技术重点研发计划(2017ZDXM-GY-097)
摘    要:为预防钻井过程中卡钻事故的发生,通过提出了一种改进麻雀搜索算法(improved sparrow search algorithm, ISSA)优化支持向量机(support vector machines, SVM)的预测模型方法(ISSA-SVM),在发现者位置更新公式中引入一种改进的自适应非线性惯性递减权重;在警戒者位置更新公式中引入莱维飞行策略。利用主成分分析法(principal component analysis, PCA)对外国某大型油田的实测钻井数据进行降维处理,并利用惩罚参数和核参数进行卡钻事故的预测。实验结果表明:ISSA-SVM的预测准确率高达85.185 2%,且收敛速度更快,可见ISSA-SVM可有效预测钻井卡钻事故。

关 键 词:钻井  卡钻  麻雀搜索算法(SSA)  支持向量机(SVM)  主成分分析法(PCA)
收稿时间:2023-07-05
修稿时间:2023-12-26
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号