首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进yolox_s的火焰烟雾检测算法
作者姓名:谢康康  朱文忠  肖顺兴  谢林森
作者单位:四川轻化工大学
基金项目:四川省科技研发重点项目(2019YFG0200);四川省科技创新(苗子工程)培育项目(2022049);四川轻化工大学研究生创新(Y2022134)
摘    要:针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9 621张图片。并且通过对数据集采用Mosaic数据增强的方式,增加数据的多样性。其次对backbone部分采用swin-T骨干网络来代替原来的CSPDarkNet骨干网络,能够更好的捕捉不同尺度下的特征,有效地提升了目标检测的精度。然后对网络模型引入加权双向特征金字塔网络(bidirectional feature pyramid network, BiFPN)特征融合网络,提高检测的效率和网络模型的适应性,在复杂背景下同样可以保持较高的检测精度。最后引入CA注意力机制来加强此算法的特征提取能力。经过对比实验表明,改进后的YOLOX_S的火焰烟雾检测算法具有较高准确性,其mAP@0.5(预测框与真实框重合程度的阈值为0.5时的平均检测精度)达到81.5%,相比原网络提高了5.3%。改进后的YOLOX_S网络模型在火焰烟雾检测方面具有更高准确性和更低的误报率。

关 键 词:YOLOX  swin transformer  加权双向特征金字塔网络(BiFPN)  火焰烟雾检测  注意力机制
收稿时间:2023-04-13
修稿时间:2023-12-12
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号