首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCM聚类算法的Blog社区发现
引用本文:柳助民,李绍滋,林达真,柯逍,曹冬林. 基于PCM聚类算法的Blog社区发现[J]. 厦门大学学报(自然科学版), 2009, 48(4)
作者姓名:柳助民  李绍滋  林达真  柯逍  曹冬林
作者单位:厦门大学信息科学与技术学院,福建,厦门,361005
摘    要:针对传统的社区发现算法无法发现社区中的核心成员和边界成员的缺点,提出了基于PCM聚类算法的Blog社区发现算法,用来识别Blog社区的核心和边界.首先,使用随机行走的方法计算可以衡量两个Blog亲密度的对称社会距离;然后,在对称社区距离的基础上使用PCM聚类算法对Blog进行聚类,得到每个社区中的成员属于社区的概率表示.最后,通过确定相应的概率阈值,确定社区的核心和边界.实验结果表明:该算法能够获得社区中的成员属于社区的概率,根据这个概率可以确定社区中的核心成员和边界成员.

关 键 词:Blog社区发现  随机行走  对称社会距离  PCM聚类算法

Blog Community Discovery Based on PCM Clustering Algorithm
LIU Zhu-min,LI Shao-zi,LIN Da-zhen,KE Xiao,CAO Dong-lin. Blog Community Discovery Based on PCM Clustering Algorithm[J]. Journal of Xiamen University(Natural Science), 2009, 48(4)
Authors:LIU Zhu-min  LI Shao-zi  LIN Da-zhen  KE Xiao  CAO Dong-lin
Abstract:Considering that the traditional calculation of community discovery can not find the shortcomings of the core and boundary members of the community,this paper puts forward Blog community discovery algorithm based on soft clustering algorithm PCM to identify the core and boundary of the Blog community. Firstly, the use of calculation with random walk method can measure the symmetrical society distance between two Blogs′ intimacy. Then, on the base of symmetrical society distance, algorithm use PCM to cluster Blog to get the probability of the member in every community group belonging to community group. At last, the core and boundary of the community can be determined through the definition of corresponding probability threshold value. The experiment has shown that the algorithm can obtain the probability of the community member belonging to the community and can find out the core and boundary members of the community according to the probability.
Keywords:Blog community discovery  random walk  symmetrical society distance  PCM clustering algorithm
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号