首页 | 本学科首页   官方微博 | 高级检索  
     

Curvelet感兴趣区域相关图的纹理图像检索
引用本文:苏赋. Curvelet感兴趣区域相关图的纹理图像检索[J]. 上海交通大学学报, 2014, 48(5): 653-657
作者姓名:苏赋
作者单位:(西南石油大学 电气信息学院, 成都 610500)
基金项目:四川省科技厅支撑项目(2012GZX0080)资助
摘    要:提出了一种基于感兴趣区域纹理图像的检索方法.对纹理图像进行Curvelet多尺度分解,根据各层子带的能量分布提取感兴趣区域,并量化感兴趣区域Curvelet系数,计算颜色自相关图而构造图像的特征向量.在Brodatz纹理库中的实验结果表明,与原有基于Curvelet的纹理图像检索方法相比,所提出的方法对纹理图像检索的效果更佳.

关 键 词:Curvelet相关图   感兴趣区域   图像检索  
收稿时间:2013-04-22

Region of Interest Based Texture Image Retrieval Using Curvelet Correlogram
SU Fu. Region of Interest Based Texture Image Retrieval Using Curvelet Correlogram[J]. Journal of Shanghai Jiaotong University, 2014, 48(5): 653-657
Authors:SU Fu
Affiliation:(School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China)
Abstract:A novel algorithm based on region of interest was presented for texture image retrieval. The proposed method was based on a combination of Curvelet multi resolution image decomposition and colour correlation histogram. First, Curvelet transform was applied for texture image multi-scale decomposition. Then, the region of interest was extracted based on the distribution of the energy of different scales, and a quantization step was used before computing auto correlograms of the region of interest Curvelet coefficients. Finally, index vectors were constructed for similarity comparison. Experiments based on Brodatz benchmark database show that the algorithm is more effective compared to other retrieval methods based on Curvelet in texture image retrieval.Key words:
Keywords:Curvelet   correlogram  region of interest  image retrieval  
本文献已被 CNKI 等数据库收录!
点击此处可从《上海交通大学学报》浏览原始摘要信息
点击此处可从《上海交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号