首页 | 本学科首页   官方微博 | 高级检索  
     检索      

等离子体-气体渗透装置中静态液态锂-固态金属膜双层结构Li/Fe的氢渗透行为研究
引用本文:荆文娜,刘建星,王思蜀,陈波,陈建军,韦建军,叶宗标,芶富均.等离子体-气体渗透装置中静态液态锂-固态金属膜双层结构Li/Fe的氢渗透行为研究[J].四川大学学报(自然科学版),2023,60(1):014001-121.
作者姓名:荆文娜  刘建星  王思蜀  陈波  陈建军  韦建军  叶宗标  芶富均
作者单位:四川大学原子核科学技术研究所,四川大学原子核科学技术研究所,四川大学原子与分子物理研究所,四川大学原子核科学技术研究所,四川大学原子核科学技术研究所,四川大学原子与分子物理研究所,四川大学原子核科学技术研究所,四川大学原子核科学技术研究所
基金项目:国家自然科学基金(11905151, 11875198); 国家重点研究发展计划(2022YFE03130000)
摘    要:在未来聚变堆中,氚透过第一壁的渗透和滞留行为是影响氚自持以及装置核安全的重要问题.针对这一问题,四川大学先进核能实验室自主设计了可以研究气体和等离子体驱动的氢同位素在静态/流动液态金属中渗透行为的装置.本文详细地介绍了该装置,并分别研究了在气体驱动和等离子体驱动这两种渗透机制下,氢透过静态双层渗透结构Li/Fe的渗透行为.从实验结果中发现,温度的升高会使得气体驱动的氢渗透通量升高,且到达稳态的时间缩短.ICP等离子体源功率增大,引起氢等离子体密度增大,也会使得等离子体驱动的氢渗透通量升高.气体驱动渗透到达稳态的时间远小于等离子体驱动渗透到达稳态的时间.本文还通过迟滞时间法计算得到了两种不同渗透驱动机制下氢原子在Li/Fe中的扩散系数.实验结果表明,该渗透装置可以较好地对氢同位素在液态金属中的渗透行为进行研究.

关 键 词:液态金属  双层结构  气体驱动氢渗透  等离子体驱动氢渗透
收稿时间:2022/8/3 0:00:00
修稿时间:2022/11/1 0:00:00

Hydrogen permeation behavior of static liquid lithium-solid metal membrane double-layer structure Li/Fe in plasma-gas permeation device
JING Wen-N,LIU Jian-Xing,WANG Si-Shu,CHEN Bo,CHEN Jian-Jun,WEI Jian-Jun,YE Zong-Biao and GOU Fu-Jun.Hydrogen permeation behavior of static liquid lithium-solid metal membrane double-layer structure Li/Fe in plasma-gas permeation device[J].Journal of Sichuan University (Natural Science Edition),2023,60(1):014001-121.
Authors:JING Wen-N  LIU Jian-Xing  WANG Si-Shu  CHEN Bo  CHEN Jian-Jun  WEI Jian-Jun  YE Zong-Biao and GOU Fu-Jun
Institution:Institute of Nuclear Science and Technology, Sichuan University,Institute of Nuclear Science and Technology, Sichuan University,Institute of Atomic and Molecular Physics, Sichuan University,Institute of Nuclear Science and Technology, Sichuan University,Institute of Nuclear Science and Technology, Sichuan University,Institute of Atomic and Molecular Physics, Sichuan University,Institute of Nuclear Science and Technology, Sichuan University,Institute of Nuclear Science and Technology, Sichuan University
Abstract:In future fusion reactors, the permeation and retention behavior of tritium in the first wall is an important issue affecting tritium self-sustainment and nuclear safety in the fusion device. In order to better solve this problem, the Advanced Nuclear Energy Laboratory of Sichuan University independently designed a device to study the gas- and plasma-driven hydrogen isotopes permeation behavior in static/flowing liquid metals. In this paper, the device is introduced in detail, and the gas- and plasma-driven hydrogen permeation behavior through the static double-layer structure Li/Fe are studied respectively. It can be seen from the experimental results that the temperature rising will increase the gas-driven hydrogen permeation fluxes and shorten the time to reach the steady-state. The enlargement of ICP plasma source power leads to the boosting of hydrogen plasma density and plasma-driven hydrogen permeation fluxes. The time of gas-driven permeation reaching steady-state is much less than that of plasma-driven permeation. In this paper, the diffusivity of hydrogen atoms in Li/Fe under two different permeation regimes is also calculated by the lag time. The experimental results show that this device can better study the permeation behavior of hydrogen isotopes in liquid metals.
Keywords:Liquid metals  Double-layer  Gas-driven permeation  Plasma-driven  permeation
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号