首页 | 本学科首页   官方微博 | 高级检索  
     

基于计算机视觉的未识别民族面部特征研究
引用本文:李泽东,曹丹,陆敏,段晓东,王存睿. 基于计算机视觉的未识别民族面部特征研究[J]. 大连民族学院学报, 2016, 18(3): 260-265
作者姓名:李泽东  曹丹  陆敏  段晓东  王存睿
作者单位:1.东北大学 系统科学研究所,辽宁 沈阳 110819;
2. 大连民族大学 a.计算机科学与工程学院;
b.大连市民族文化数字技术重点实验室,辽宁 大连 116605;
3. 北方民族大学 计算机科学与工程学院,宁夏 银川 750021
基金项目:国家民委科研项目(GM-2009-66);辽宁省科学计划项目(2013405003)。
摘    要:基于计算机视觉通过特征点定位方法提取图像中的人脸特征点,利用其构建了眉间距、瞳孔间距、眼睛宽度等多项指标来刻画民族人脸特征,并分析了穿青人、南京人、蔡家人和革家人等未识别民族的特征,且与汉族、朝鲜族、藏族、蒙古族、壮族和维族等民族进行了相似性度量。实验表明未识别民族的面部特征分布存在一定规律,但受性别影响,不同民族面部之间的相似性也不尽相同。研究结果不仅证实了利用计算机视觉技术对多民族人脸特征进行分析的可行性,也为民族学人类学的相关研究提供了一种新途径。

关 键 词:计算机视觉  面部特征  未识别民族  相似性度量  

The Study for Facial Features of Unrecognized Ethnic Groups Based on Computer Vision
LI Ze-dong,CAO Dan,LU Min,DUAN Xiao-dong,WANG Cun-rui. The Study for Facial Features of Unrecognized Ethnic Groups Based on Computer Vision[J]. Journal of Dalian Nationalities University, 2016, 18(3): 260-265
Authors:LI Ze-dong  CAO Dan  LU Min  DUAN Xiao-dong  WANG Cun-rui
Affiliation:1.Institute of System Science, Northeastern University, Shenyang Liaoning 110819, China;
2a.School ofComputer Science and Engineering;
2b.Dalian Key Lab of Digital Technology for National Culture, DalianMinzu University, Dalian Liaoning 116605, China;
3.College of Computer Science and Engineering, Beifang University of Nationalities, Yinchuan Ningxia 750021, China
Abstract:The facial feature points are first extracted from images using landmark method in this paper. Then, the facial features, such as brow distance, pupil distance, eye wide, ect. are constructed for describing facial characteristics. Last, unrecognized ethnic groups such as Chuanqing, Nanjing, Caijia and Gejia are analyzed, and the similarity measurement is also conducted by clustering method among multi-ethnic groups including Chuanqing, Nanjing, Caijia, Gejia, Han, Korean, Tibetan, Mongolian, Zhuang and Uygur. The experiments show that there are regularities in the distribution of unrecognized ethnic groups. Due to the effect of gender, the similarities are also different among multi-ethnic groups. The results not only confirm the effectiveness for facial feature analysis using computer technology, but also provide a new approach for anthropology research.
Keywords:computer vision   facial features   unrecognized ethnic groups   similarity measurement  
本文献已被 万方数据 等数据库收录!
点击此处可从《大连民族学院学报》浏览原始摘要信息
点击此处可从《大连民族学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号