首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A synthetic multicellular system for programmed pattern formation
Authors:Basu Subhayu  Gerchman Yoram  Collins Cynthia H  Arnold Frances H  Weiss Ron
Institution:Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Abstract:Pattern formation is a hallmark of coordinated cell behaviour in both single and multicellular organisms. It typically involves cell-cell communication and intracellular signal processing. Here we show a synthetic multicellular system in which genetically engineered 'receiver' cells are programmed to form ring-like patterns of differentiation based on chemical gradients of an acyl-homoserine lactone (AHL) signal that is synthesized by 'sender' cells. In receiver cells, 'band-detect' gene networks respond to user-defined ranges of AHL concentrations. By fusing different fluorescent proteins as outputs of network variants, an initially undifferentiated 'lawn' of receivers is engineered to form a bullseye pattern around a sender colony. Other patterns, such as ellipses and clovers, are achieved by placing senders in different configurations. Experimental and theoretical analyses reveal which kinetic parameters most significantly affect ring development over time. Construction and study of such synthetic multicellular systems can improve our quantitative understanding of naturally occurring developmental processes and may foster applications in tissue engineering, biomaterial fabrication and biosensing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号