首页 | 本学科首页   官方微博 | 高级检索  
     

多分辨分析和K均值聚类改进FCM图像分割
引用本文:郭海涛,赵红叶,徐雷,侯一民,焦圣喜. 多分辨分析和K均值聚类改进FCM图像分割[J]. 吉首大学学报(自然科学版), 2015, 36(2): 29-32. DOI: 10.3969/j.issn.1007-2985.2015.02.007
作者姓名:郭海涛  赵红叶  徐雷  侯一民  焦圣喜
作者单位:(1.内蒙古大学电子信息工程学院,内蒙古 呼和浩特 010021;2.东北电力大学电气工程学院,吉林 吉林 132012;3.东北电力大学自动化工程学院,吉林 吉林 132012)
基金项目:国家自然科学基金资助项目(41076060);吉林省自然科学基金资助项目(20130101056JC);内蒙古自然科学基金资助项目(2014MS0601);内蒙古大学高层次人才引进科研项目(135123)
摘    要:
模糊C均值(Fuzzy C-Means,FCM)聚类广泛应用于图像分割,但FCM聚类中随机确定初始聚类中心容易导致图像的错误分割.为了避免这个缺点,提出一种用于图像分割的FCM聚类初始聚类中心的选取方法.该方法利用图像灰度-邻域均值二维直方图的峰值的个数确定图像聚类数目,然后对图像的低频子带图像利用K均值聚类得到FCM聚类初始聚类中心.实测图像的分割实验表明该方法具可行性.

关 键 词:二维直方图  多分辨分析  K均值聚类  FCM聚类  图像分割

Improved FCM Image Segmentation Based on Multi-Resolution Analysis and K-Means Clustering
GUO Haitao , ZHAO Hongye , XU Lei , HOU Yimin , JIAO Shengxi. Improved FCM Image Segmentation Based on Multi-Resolution Analysis and K-Means Clustering[J]. Journal of Jishou University(Natural Science Edition), 2015, 36(2): 29-32. DOI: 10.3969/j.issn.1007-2985.2015.02.007
Authors:GUO Haitao    ZHAO Hongye    XU Lei    HOU Yimin    JIAO Shengxi
Affiliation: (1.College of Electronic Information Engineering,Inner Mongolia University,Hohhot 010021,China;2.College of Electrical Engineering,Northeast Dianli University,Jilin 132012,Jilin China;3.College of Automation Engineering,Northeast Dianli University,Jilin 132012,Jilin China)
Abstract:
The fuzzy C-Means (FCM) clustering is widely used in image segmentation,but the random determination of initial clustering centers of the FCM clustering is likely to generate incorrect segmentation of an image.To avoid the such deficiency,a method of choosing initial clustering centers in the FCM clustering for image segmentation is proposed.The method determines the number for the image clustering by means of the number of the peaks in the two-dimensional histogram of an image comprised of gray values of pixels and mean values of their neighborhoods.Then the K-means clustering is used to obtain the initial clustering centers of the FCM clustering for the low-frequency subband image of the original image.The image segmentation experiments show that the proposed method is feasible.
Keywords:two-dimensional histogram  multi-resolution analysis  K-means clustering  FCM clustering  image segmentation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉首大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《吉首大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号